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Research

Fast and accurate evaluation of environmen-
tal chemical toxicity currently is challenged 
by the high cost and low-throughput nature 
of traditional toxicity testing methods and the 
large number of environmental chemicals that 
need to be evaluated [Dix et al. 2007; Kavlock 
et  al. 2009; National Research Council 
(NRC) 2007]. In response to these chal-
lenges, three government agencies—the U.S. 
Environmental Protection Agency (EPA), 
the National Toxicology Program (NTP), 
and the National Institutes of Health (NIH) 
Chemical Genomics Center (NCGC)—
launched a collaborative initiative, the Tox21 
program (Collins et al. 2008; Kavlock et al. 
2009), and were recently joined by the U.S. 
Food and Drug Administration. The goal of 
this effort is to employ a broad spectrum of 
in vitro assays to use high-throughput screen-
ing (HTS) methods to screen a large number 
of environmental chemicals for their potential 
to disturb biological pathways that may result 
in toxicity. The data generated will be used to 
derive biological and chemical profiles that 
could serve as the basis for prioritization of 
chemicals for further toxicological evaluation 
(Reif et al. 2010), act as predictive surrogates 
for in vivo toxicity end points (Judson et al. 
2010), and generate testable hypotheses on 

mechanism of toxicity (Huang et al. 2008; 
Xia et al. 2009b).

Nuclear receptors (NRs) are a family 
of transcription factors that are important 
regulators of metabolism, differentiation, 
apoptosis, and cell cycle progression. The 
transcriptional activities of NRs are regulated 
by small, lipophilic molecules (Gronemeyer 
et al. 2004), including pharmaceutical agents 
and chemicals in the environment, and their 
altered function has been related to a number 
of diseases (Kersten et al. 2000; Sonoda et al. 
2008; Tontonoz and Mangelsdorf 2003). For 
example, interaction of a variety of pesticides 
and other industrial chemicals with the estro-
gen and androgen NRs has been linked to 
a number of adverse health consequences, 
including birth defects, impaired reproductive 
capacity, developmental neurotoxicity, and 
certain cancers (Damstra et al. 2002). Because 
the mechanism of action leading to such tox-
icities is directly linked to chemicals binding 
to NRs, they make an ideal starting point for 
using HTS tools to characterize toxicity path-
ways as envisioned by the NRC (2007). As a 
Tox21 proof-of-concept study, we screened 
an environmentally relevant library consist-
ing of approximately 3,000 chemicals against 
a panel of 10 human NRs—the androgen 

receptor (AR), estrogen receptor α (ERα), 
farnesoid X receptor (FXR), glucocorticoid 
receptor (GR), liver X receptor β (LXRβ), 
peroxisome proliferator-activated receptor γ 
(PPARγ), peroxisome proliferator-activated 
receptor δ (PPARδ), retinoid X receptor α 
(RXRα), thyroid hormone receptor β (TRβ), 
and vitamin D receptor (VDR)—in a quanti-
tative high-throughput screening (qHTS) for-
mat (Inglese et al. 2006; Xia et al. 2009a). In 
this format, a concentration–response curve 
is generated for every compound to identify 
both potential agonists and antagonists.

The systematic profiling of a large set of 
environmental chemicals such as the Tox21 
compound collection against the panel of 
10 NRs is the initial step toward identify-
ing substances with endocrine-disrupting and 
other NR-mediated toxicity potential. We 
examined the interactions for concordance 
with expected findings for a small number 
of well-characterized NR ligands, for repro-
ducibility across duplicate chemicals in the 
library, for biological profiles by cluster-
ing activities across NRs based on sequence 
homology of their ligand-binding domains 
(LBDs), and by phenotypic clustering to look 
for structure–activity relationships (SARs). 
The results demonstrate the feasibility of HTS 
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Background: The large and increasing number of chemicals released into the environment 
demands more efficient and cost-effective approaches for assessing environmental chemical toxicity. 
The U.S. Tox21 program has responded to this challenge by proposing alternative strategies for tox-
icity testing, among which the quantitative high-throughput screening (qHTS) paradigm has been 
adopted as the primary tool for generating data from screening large chemical libraries using a wide 
spectrum of assays.

Objectives: The goal of this study was to develop methods to evaluate the data generated from 
these assays to guide future assay selection and prioritization for the Tox21 program.

Methods: We examined the data from the Tox21 pilot-phase collection of approximately 3,000 
environmental chemicals profiled in qHTS format against a panel of 10 human nuclear receptors 
(AR, ERα, FXR, GR, LXRβ, PPARγ, PPARδ, RXRα, TRβ, and VDR) for reproducibility, concor-
dance of biological activity profiles with sequence homology of the receptor ligand binding domains, 
and structure–activity relationships.

Results: We determined the assays to be appropriate in terms of biological relevance. We found 
better concordance for replicate compounds for the agonist-mode than for the antagonist-mode 
assays, likely due to interference of cytotoxicity in the latter assays. This exercise also enabled us 
to formulate data-driven strategies for discriminating true signals from artifacts, and to prioritize 
assays based on data quality.

Conclusions: The results demonstrate the feasibility of qHTS to identify the potential for environ-
mentally relevant chemicals to interact with key toxicity pathways related to human disease induction.
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to identify the potential for environmentally 
relevant chemicals to interact with key toxicity 
pathways related to human disease induction.

Materials and Methods
Compound collection. The current Tox21 
compound collection consists of 2,870 com-
pounds: 1,408 provided by the NTP (Xia 
et al. 2008) and 1,462 provided by the U.S. 
EPA (Huang et al. 2009; Judson et al. 2009). 
The structures and annotations of these com-
pounds are publicly available (Huang 2010; 
PubChem 2007, 2009). The compounds were 
dissolved in dimethyl sulfoxide (DMSO) and 
plated in 1,536-well plate format at 14 or 
15 concentrations ranging from 0.1 μM to 
20 mM. See Supplemental Material for more 
details (doi:10.1289/ehp.1002952).

β-Lactamase reporter gene assay and 
qHTS. GeneBLAzer β-lactamase (bla) HEK 
293T cell lines that constitutively co-express 
a fusion protein composed of the LBDs of 
related human NRs coupled to the DNA-
binding domain of the yeast transcription 
factor GAL and cell culture reagents were 
obtained from Invitrogen (Carlsbad, CA). 
See Supplemental Material for more details 
(doi:10.1289/ehp.1002952).When acti-
vated, these fusion proteins then stimulate bla 
reporter gene expression. Compound format-
ting and qHTS were performed as described 
previously (Xia et al. 2009b). Briefly, the bla 
cells with different NRs were dispensed in 
1,536-well plates for screening. After cells 
were incubated for 5–6 hr, compounds at 14 
or 15 concentrations from the NTP and U.S. 
EPA collections were transferred to the assay 
plate with the final concentrations ranging 
from 0.5 nM to 92 μM. The plates were incu-
bated for 16–18 hr at 37°C before detection 
mix was added, and the plates were then incu-
bated again at room temperature for 1.5–2 hr. 
Fluorescence intensity (405 nm excitation, 
460- and 530-nm emission) was measured 
using an Envision plate reader (PerkinElmer, 
Shelton, CT). Data were expressed as the 
ratio of 460-nm to 530-nm emissions. The 
assay performance was assessed by plate sta-
tistics (signal-to-background ratio, Z´-factor, 
coefficient of variation) (Zhang et al. 1999) 
(see Supplemental Material, Table 2).

qHTS data analysis. Analysis of compound 
concentration–response data was performed 
as previously described (Inglese et al. 2006). 
See Supplemental Material for more details 
(doi:10.1289/ehp.1002952). Briefly, raw plate 
reads for each titration point were first normal-
ized relative to the positive control compound 
and DMSO-only wells and then corrected by 
applying an NCGC in-house pattern correc-
tion algorithm using compound-free control 
plates (i.e., DMSO-only plates) at the begin-
ning and end of the compound plate stack. 
Concentration–response titration points for 

each compound were fitted to a four-parameter 
Hill equation (Hill 1910), yielding concentra-
tions of half-maximal activity (AC50) and max-
imal response (efficacy) values. Compounds 
were designated as class 1–4 according to the 
type of concentration–response curve observed 
(Inglese et al. 2006). Curve classes are heu-
ristic measures of data confidence, classify-
ing concentration–responses on the basis of 
efficacy, the number of data points observed 
above background activity, and the quality of 
fit. To facilitate analysis, each curve class was 
combined with an efficacy cutoff and con-
verted to a numeric curve rank such that more 
potent and efficacious compounds with higher 
quality curves were assigned a higher rank (see 
Supplemental Material, Table 4). Curve ranks 
should be viewed as a numeric measure of 
compound activity. Compounds that showed 
activation/inhibition in both the ratio and the 
460-nm readouts were defined as activators/

inhibitors. Among the activators/inhibitors, 
compounds with curve rank ≥ 5 or ≤ –5 in 
the ratio readout were further defined as active 
activators (agonists)/inhibitors (antagonists). 
Compounds with curve rank 0 (curve class 4) 
in both the ratio and 460-nm readouts were 
defined as inactive, and compounds with other 
phenotypes were defined as inconclusive. Curve 
rank, potency, and efficacy data generated on 
all compounds and assays can be downloaded 
from Huang (2010).

Results
An initial evaluation of assay performance 
showed that the assays behaved as expected in 
terms of biological activity of known agonists 
and antagonists included as positive control 
compounds in the screening libraries. The 
Tox21 compound collection contains a set 
of 54 known NR ligands assembled by Sigma 
(St. Louis, MO) (Sigma 2007). Table 1 lists 

Table 1. NR ligands and their observed assay activities.

NR ligand name
Known NR 

activitya NR assayb
Observed 

phenotypec
Observed EC50 
or IC50 (μM)d

Danazol AR agonist AR agonist Activator 0.06
17α-Hydroxyprogesterone AR agonist AR agonist Activator 0.002
Progesterone AR agonist AR agonist Activator 0.06
Corticosterone AR agonist AR agonist Activator 0.22
Cyproterone acetate AR antagonist AR antagonist Inhibitor 15.85
Flutamide AR antagonist AR antagonist Inhibitor 31.62
Mifepristone AR antagonist AR antagonist Inhibitor 2.00
Nilutamide AR antagonist AR antagonist Inhibitor 12.59
Diethylstilbestrol ERα agonist ERα agonist Activator < 0.001
β-Estradiol ERα agonist ERα agonist Activator < 0.001
1,3,5-tris(4-Hydroxyphenyl)-

4-propyl-1H-pyrazole
ERα agonist ERα agonist Activator 0.10

4-Hydroxytamoxifen ERα antagonist ERα antagonist Inhibitor 0.07
Raloxifene hydrochloride ERα antagonist ERα antagonist Inhibitor 0.03
Tamoxifen citrate ERα antagonist ERα antagonist Inhibitor 8.91
Lithocholic acid FXR agonist FXR agonist Activator 22.39
Beclomethasone GR agonist GR agonist Activator 0.04
Betamethasone GR agonist GR agonist Activator 0.09
Dexamethasone GR agonist GR agonist Activator 0.02
Hydrocortisone GR agonist GR agonist Activator 0.08
Triamcinolone GR agonist GR agonist Activator 0.11
Cholesterol LXR agonist LXRβ agonist Activator 39.81
TO-901317 LXR agonist LXRβ agonist Activator 0.25
Fmoc-l-leucine PPARγ agonist PPARγ agonist Activator 11.22
Ciglitizone PPARγ agonist PPARγ agonist Activator 1.41
GW1929 PPARγ agonist PPARγ agonist Activator 0.002
Troglitazone PPARγ agonist PPARγ agonist Activator 0.13
DRF 2519 PPARγ agonist PPARγ agonist Activator 0.10
BADGE PPARγ antagonist PPARγ antagonist Inhibitor 50.12
GW9662 PPARγ antagonist PPARγ antagonist Inhibitor 12.59
2-Bromohexadecanoic acid PPARδ agonist PPARδ agonist Activator 28.18
GW0742 PPARδ agonist PPARδ agonist Activator 19.95
l-165,041 PPARδ agonist PPARδ agonist Activator 0.09
13-cis-Retinoic acid RAR agonist RXRα agonist Activator 0.25
TTNPB RAR agonist RXRα agonist Activator 0.71
AM-580 RARα agonist RXRα agonist Activator 0.62
Retinoic acid RXR agonist RXRα agonist Activator 0.13
3,3´,5-Triiodo-l-thyronine TR agonist TRβ agonist Activator < 0.001
Lithocholic acid VDR agonist VDR agonist Activator 22.39

Abbreviations: BADGE, bisphenol A diglycidyl ether; RAR, retinoic acid receptor; TTNPB, (E)-4-[2-(5,6,7,8-tetrahydro-
5,5,8,8-tetramethyl-2-naphthylenyl)-1 -propenyl] benzoic acid. 
aNR activity of compound reported in literature. bThe NR bla assay in which the compound was tested. cActivity 
observed for the compound when tested in the NR bla assay. dEC50 (agonist) or IC50 (antagonist) obtained for the com-
pound when tested in the NR bla assay.
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the ligands with known interactions with NRs 
included in the present study and their activi-
ties observed [phenotype and half-maximal 
effective concentration (EC50) or inhibitory 
concentration (IC50)] in the corresponding 
NR assays. We positively identified all of these 
known ligands with our assays, with expected 
potencies confirming the utility of these NR 
assays. Some of the apparent actives identified 
from the LXRβ assays indicated a potential 
problem with the LXRβ cell line (data not 
shown). We thus excluded data from these 
assays from further analysis.

Figure 1A,B shows the distributions of 
compound activity outcomes in the agonist- 
and antagonist-mode assays, respectively. In 
general, more compounds were active in the 
antagonist-mode assays than in the agonist-
mode assays (Figure 1C), in which cytotoxic-
ity might be playing a role. The percentage of 
compounds classified as active ranged from 
0.4% (FXR) to 3.2% (ERα) in the agonist-
mode assays and from 3.3% (PPARδ) to 
10.9% (AR) in the antagonist-mode assays. 
When we excluded compounds identified as 
potentially autofluorescent and/or cytotoxic 
(see below for criteria applied), the fractions 
of apparent activators and inhibitors decreased 
for both the agonist- and antagonist-mode 
assays (data not shown), but the number of 
apparent active compounds remained larger 
in the antagonist-mode assays, although by a 
smaller margin.

Compound reproducibility. There were 
130 compounds replicated in the U.S. EPA 
plate and 66 compounds in the NTP plate, 
and 416 compounds overlapped between the 
U.S. EPA and the NTP plates. We calculated 
compound reproducibility for all NR assays in 
both agonist and antagonist mode using the 
ratio readout. We first defined each compound 
replicate as an agonist, an antagonist, incon-
clusive, or inactive based on its curve rank [for 
details, see Supplemental Material, Table 4 
(doi:10.1289/ehp.1002952)]. We then made 
three types of reproducibility calls (match, 
mismatch, and inconclusive) based on the con-
cordance of each replicate (Table 2). Overall, 

the intraplate replicates showed slightly better 
reproducibility (88.6%) than did interplate 
replicates between the U.S. EPA and NTP 
libraries (85.5%). Both mismatch (4.1%) and 
inconclusive (10.4%) rates were slightly higher 
for the interplate than for the intraplate rep-
licates (3.5% mismatch and 7.9% inconclu-
sive). Variations in compound reproducibility 
were assay dependent (Figure 2). The over-
all matching rate, counting both intra- and 
interplate replicates, ranged from 97.7% (GR 
agonist) to 74.2% (RXRα agonist); mismatch 
rates ranged from 0.3% and 0.5% (GR and 
FXR agonist mode) to 9.0% (RXRα agonist), 
and inconclusive rates ranged from 2.0% (GR 
agonist) to 16.8% (RXRα agonist).

The reproducibility of an assay is a good 
indicator of assay performance and quality. 
To generate a single measure of reproduc-
ibility so that all assays could be easily com-
pared, we scored all NR assays (2× % active 
match + % inactive match – % inconclusive 
– 2× % mismatch) and ranked them by this 
score, sorted in descending order (Table 3). 
We calculated the reproducibility score in 
a way such that assays with higher concor-
dance rates and lower mismatch rates would 
be ranked higher. We assigned more weight 
to active matches and mismatches because we 
derived these results from more reliable con-
centration–response curves and to account for 
the overall low active rate. We assigned each 
assay an arbitrary grade: A (score, ≥ 90%), 
B (≥ 80% to 90%), C (≥ 70% to 80%), or 
D (< 70%), with A being the highest-quality 
assays in terms of reproducibility and D the 
lowest. The grades are meant only to serve 
as a guide for assay prioritization. With this 
ranking scheme, we ranked the GR and FXR 
agonist-mode assays as the best-performing 
assays and the RXRα agonist-mode assay as 
the worst performing, with the lowest data 
reproducibility. The agonist-mode assays 
performed better overall than did the antag-
onist-mode assays—among the top 50% per-
forming assays, six were agonist-mode assays 
and only three were antagonist-mode assays. 
The top five assays were all agonist mode. This 

outcome was not entirely unexpected because 
the antagonist-mode assays all required the 
pre-addition of nonsaturating levels of an ago-
nist compound to stimulate the receptor sig-
nal before test compounds could be screened, 
which introduces an extra source of variance.

Using single-channel readouts of bla assays 
to assess autofluorescence and cytotoxicity. 
Compound autofluorescence and cytotoxicity 
can interfere with assay readouts and produce 
artificial results, because fluorescent com-
pounds could appear as activators and show up 
as false positives in agonist-mode assays, and 
cytotoxic compounds could appear as inhibi-
tors because of reduced cell viability and show 
up as false positives in antagonist-mode assays. 
The green channel (530-nm readout) is the 
control channel of the bla assay. Increased or 
decreased fluorescence activity in this chan-
nel can be interpreted as an indicator of com-
pound autofluorescence or cytotoxicity (Xia 
et al. 2009b). Blue fluorescent compounds may 
not be detected in the 530-nm readout but 
could still interfere with the 460-nm readout, 
which is the blue, reporter-gene–dependent 
signal channel of the bla assay. Therefore, pan-
activation in the blue channel across multi-
ple NR assays would also indicate compound 
autofluorescence. We then identified a com-
pound as autofluorescent if it showed activa-
tion in > 10 of 20 agonist-mode assay readouts 
(counting both the 530-nm and 460-nm read-
outs separately) or if it showed activation in the 
460-nm readout in more than four agonist-
mode assays and was identified as fluorescent 
(activity > 10% fluorescent control compound) 
at 460 nm in the autofluorescence spectra scans 
(Simeonov et al. 2008). Using these criteria, 
we identified 25 compounds (11 from NTP 
and 14 from U.S. EPA) as autofluorescent 
and excluded them from further analysis [see 
Supplemental Material, Table 5 (doi:10.1289/
ehp.1002952)]. The criteria chosen for iden-
tifying autofluorescent compounds (as well 
as cytotoxic compounds) were empirical and 
were used to minimize false positives. Most of 
the compounds identified as autofluorescent 
by this method were well-known fluorophores, 

Figure 1. Distributions of compound activity outcomes in the agonist-mode (A) and antagonist-mode (B) NR assays. (C) Distribution of active agonists and antagonists. 
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partially validating the approach. Further 
experimental studies are needed to fully con-
firm the apparent artifacts.

The cell viability assay has been widely used 
as a measure of compound cytotoxicity (Xia 
et al. 2008). We identified active compounds 
(non-class 4) identified by the cell viability assay 
in parental HEK 293 cells [for a description 
of the cell viability assay, see Supplemental 
Material (doi:10.1289/ehp.1002952)], or com-
pounds that reduced activity in the 530-nm 
readout of more than four antagonist-mode 
assays, as cytotoxic and excluded them from 
further analysis of the antagonist-mode data. 
We identified a total of 323 compounds as 
potentially cytotoxic, 152 of which were from 
the NTP collection and 171 from the U.S. EPA 
collection (Supplemental Material, Table 6). 
Cytotoxicity interference is less of a concern 
for agonist-mode assays than for antagonist-
mode assays because agonists that are cytotoxic 
at higher concentrations generate bell-shaped 
(inverted-U) concentration–response curves in 
the 460-nm channel. For more discussion on 
how activities in the 460-nm and 530-nm reads 
correlated with the cell viability assay results, see 
Supplemental Material, “Using single channel 
readouts of bla assays to assess cytotoxicity” and 
Supplemental Material, Figure 1. 

Chemical genomics: compound activity-
pattern similarity and NR LBD sequence 
homology. The agonist-mode and the antag-
onist-mode NR assays were both hierarchi-
cally clustered using the correlation of the 
compound curve ranks (from the ratio read-
out) as the similarity metric. We excluded 
compounds identified as potentially autofluo-
rescent from the clustering exercises and also 
excluded compounds identified as potentially 
cytotoxic from the clustering of the antago-
nist-mode assays. Figure 3A,B shows results 
for agonist and antagonist mode, respectively. 
The agonist-data–based clustering of NRs 
(Figure 3A) matched nearly perfectly with 
the NR LBD sequence homology [Figure 3C; 
see also Supplemental Material, Figure  2 
(doi:10.1289/ehp.1002952)] (Laudet 1997; 
Zhang et al. 2004), where the agonist data 

Figure 2. Intralibrary (A) and interlibrary (B) compound reproducibility across different NR assays. Intralibrary 
reproducibility is calculated by comparing the activity of copies of each compound replicated within the U.S. 
EPA or NTP compound library. Interlibrary reproducibility is calculated by comparing the activity of the NTP 
copy and U.S. EPA copy of each compound presented in both the U.S. EPA and NTP libraries.
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Table 2. Compound reproducibility definitions.

Replicate no. 1 Replicate no. 2 Call
Agonista Agonist Active match
Antagonistb Antagonist Active match
Inactivec Inactive Inactive match
Agonist Inactive Mismatch
Inactive Agonist Mismatch
Antagonist Inactive Mismatch
Inactive Antagonist Mismatch
Agonist Antagonist Mismatch
Antagonist Agonist Mismatch
Otherd Other Inconclusive
aCompound with curve rank ≥ 5. bCompound with curve 
rank ≤ –5. cCompound with a curve rank of 0. d“Other” 
includes compounds that showed inconclusive activities 
with nonzero curve ranks between –4 and 4.

Table 3. NR assays ranked by their compound reproducibility.

Assay Mismatch (%) Inconclusive (%) Match (%) Reproducibility score (%) Assay gradea

GR agonist 0.3 2.0 97.7 98.0 A
FXR agonist 0.5 2.1 97.4 95.8 A
TRβ agonist 1.1 2.3 96.6 94.8 A
VDR agonist 1.1 3.1 95.8 91.2 A
PPARδ agonist 1.6 6.4 92.0 91.2 A
TRβ antagonist 2.0 6.0 92.0 89.4 B
VDR antagonist 2.9 5.1 92.0 89.4 B
FXR antagonist 2.0 10.0 88.1 89.1 B
PPARγ agonist 1.6 7.5 90.8 86.1 B
GR antagonist 3.3 9.6 87.1 85.1 B
AR agonist 2.8 9.8 87.4 80.6 B
PPARγ antagonist 4.9 11.4 83.7 77.5 C
ERα agonist 4.0 9.8 86.2 76.9 C
RXRα antagonist 6.7 8.3 85.0 76.8 C
ERα antagonist 4.8 11.5 83.6 76.8 C
PPARδ antagonist 4.7 11.6 83.7 71.6 C
AR antagonist 7.2 15.4 77.5 67.2 D
RXRα agonist 9.0 16.8 74.2 57.7 D
aAssays with grade A were considered the highest quality assays in terms of reproducibility, and D the lowest.



Huang et al.

1146	 volume 119 | number 8 | August 2011  •  Environmental Health Perspectives

clustering segregated the nine NRs into two 
major branches (Figure  3A): the ER-like 
branch, with ERα, AR, and GR, and the thy-
roid hormone receptor (TR)-like branch, with 
RXRα and the rest of the NRs. The clustering 
again further divided the TR-like branch into 
two subgroups, one containing TRβ, FXR, 
and VDR and the other containing the two 
PPARs and RXRα. The only difference from 
the sequence clustering (Figure 3C) was that 
PPARδ clustered more closely with RXRα 
than with PPARγ in the assay-data–based 
clustering (Figure 3A).

The antagonist-mode data–based clustering 
of the NRs (Figure 3B) showed poor concor-
dance with the NR LBD sequence homology 
(Figure 3C). The ER-like subfamily members 
were segregated into two different branches, 
with ERα and GR in one branch and AR 
clustered into the other branch (Figure 3B). 
This was surprising because GR is more closely 
related to AR than to ERα in terms of sequence 
similarity (Figure 3C). The clustering grouped 
the TR-like subfamily into two clusters as well, 
with VDR, PPARδ, and PPARγ in one cluster 
and TRβ and FXR in the other (Figure 3B). 
The two PPARs are the most closely related 
by sequence (Figure 3C), but this was not 
reflected in the antagonist-mode–based pheno-
type clustering (Figure 3B).

SAR analysis. We clustered all com-
pounds in the NTP and U.S. EPA librar-
ies based on structural similarity (2,048-bit 
Daylight fingerprints; Daylight Chemical 
Information Systems, Inc., Laguna Niguel, 
CA) using the self-organizing map (SOM) 
algorithm (Kohonen 2006), yielding 336 clus-
ters. Despite of the diversity in response [for 

details, see Supplemental Material, “Structural 
diversity assessment of apparent NR agonists 
and antagonists,” and Supplemental Material, 
Figure 3 (doi:10.1289/ehp.1002952)], we 
identified 16 classes of compounds with con-
sistent NR activity patterns by examining the 
activity patterns of compounds within each 
structure cluster. Figure 4 shows the struc-
ture scaffolds and NR activities of these com-
pound classes. Among these are many known 
ligands or disruptors of NRs whose activi-
ties observed in our study was consistent with 
their known NR activities. Examples include 
the known ERα-active classes of compounds, 
such as the estradiol and tamoxifen analogs, 
parabens (Harvey and Everett 2004), bisphe-
nyls (including bisphenol A, bisphenol B, and 
methoxychlor), and flavonoids; steroid hor-
mones and analogs and flutamides with known 
AR activity; and corticosteroids with known 
GR activity. We also observed that subtle 
changes in structures of compounds belong-
ing to the same class led to variations in their 
NR activity. For example, the class of steroid 
hormones was clustered into several subclasses 
based on their NR activity patterns, where the 
sex hormones appeared as agonists of AR and 
ERα and the corticosteroids showed activities 
mostly against AR and GR. Another example 
is the ERα activity of the flavonoids, where 
the isoflavones (e.g., genistein) were identi-
fied as more conclusive/potent ERα agonists 
than the normal flavonoids (e.g., kaempferol). 
Several classes of compounds, including the 
lactofen analogs (Butler et al. 1988) and dicar-
boximide fungicides (Kelce et al. 1994), have 
been reported to induce liver toxicity. The 
lactofen analogs appeared primarily as PPARγ 

and AR antagonists, and the dicarboximide 
fungicides as AR antagonists, consistent with 
literature reports (Gray et al. 2001); however, 
the AR activity of the lactofen analogs has 
not been reported before. Of the chloroaceta-
nilide herbicides, alachlor (Klotz et al. 1996), 
and acetochlor (Rollerova et al. 2000) have 
been reported to have weak estrogenic effects, 
consistent with their weak activities observed 
in our ERα assays. However, we consistently 
identified this class of compounds as PPARγ 
antagonists in our NR assays as well. The NR 
activity of these compounds may be related to 
their liver toxicity.

Discussion
As Tox21 is moving from the pilot phase to 
the full production phase where a library of 
> 10,000 compounds will be screened ini-
tially against suites of NRs and stress response 
pathways, selection of appropriate assays to 
be included is critical. A set of criteria needs 
to be established to determine the value and 
quality of an assay for inclusion into the 
Tox21 production phase. One approach is 
to use the existing data from the pilot-phase 
screens. Taking this approach, we have exam-
ined the NR profiling data generated from the 
pilot phase Tox21 collection of approximately 
3,000 environmental chemicals in terms of 
data reliability, which can be measured by the 
level of variability/noise, dynamic range, and 
reproducibility, to assess potential challenges 
and propose strategies for data-driven assay 
prioritization. Having replicated compounds 
in the compound library was useful for assess-
ing assay reproducibility. Assays ranked high 
on the reproducibility scale (Table 3) could 

Figure 3. Comparison of the human NR LBD similarity and compound activity-pattern similarity. (A) and (B) Hierarchical clustering (Spotfire DecisionSite, version 
8.2; Spotfire Inc., Cambridge, MA) of the agonist-mode (A) and antagonist-mode (B) NR assays using the correlation of the compound curve ranks (from the ratio 
readout) as the similarity metric, where each row represents a compound and each column represents an NR assay. The heat maps are colored based on com-
pound activity: compounds that showed apparent activation (red) and inhibition (blue); less conclusive activators or inhibitors are colored a lighter shade of red 
or blue; inactive compounds are shown in white. (C) Phylogram of the LBDs of the nine human NRs tested. Amino acid sequences of the LBDs were downloaded 
from the PubMed protein database (PubMed 2010) and aligned using ClustalW2 (European Molecular Biology Laboratory–European Bioinformatics Institute 2009).
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be prioritized for the scaled-up screening of 
additional compound libraries. For assays that 
failed the data quality control criteria, which 
include the grade D assays and possibly the 
grade C assays listed in Table 3, replacement 
assays that measure the same biology (same 
NR in this case) need to be selected with 
alternative cell types, assay technologies (e.g., 
luciferase instead of bla), or readouts (e.g., 
luminescence instead of fluorescence).

Unlike the agonist-mode assays, in which 
the activities observed were nearly a perfect 
reflection of the NR LBD sequence phylog-
eny, the antagonist-mode phenotype cluster-
ing showed low concordance with sequence 
homology. One potential cause for this low 
concordance is that antagonists need not bind 
as perfectly as do agonists to the LBD to antag-
onize the receptor activity (Brzozowski et al. 
1997; Shiau et al. 1998). Another possible 
explanation is that a compound may antago-
nize an NR via allosteric or noncompetitive 
effects instead of directly binding to the LBD of 
the NR (Jones et al. 2009), such that the LBD 
sequence would not contribute to the antago-
nist phenotype in these NR assays. Finally, 
cytotoxicity interference, not completely 
removed to avoid losing true antagonists, could 

be a playing a role. For example, tamoxifen, a 
well-known antagonist of the estrogen receptor, 
is also cytotoxic (Cleator et al. 2009; Dhingra 
1999). In contrast, the agonist phenotype clus-
tering of NRs showed good concordance with 
the sequence clustering results because cytotox-
icity interference was minimal in the agonist 
(gain of signal) mode assays and binding to the 
LBD is probably necessary for a compound to 
activate an NR. These are further supported by 
the higher structure diversity observed for the 
apparent antagonists than the agonists. The 
lesson learned from this exercise is that we can 
use phenotype/chemical response data to infer 
LBD protein sequence/target relationships to a 
certain degree. The level of confidence depends 
on the noise level in the phenotype data. In the 
case of NRs, the agonist-mode data were more 
robust than the antagonist-mode data in infer-
ring sequence relationships.

Regardless of the potential interference 
from compound autofluorescence and cyto-
toxicity, we showed these assays to be biologi-
cally relevant by positively identifying a set of 
known NR ligands built into the compound 
collection (Table 1). In addition, SAR analysis 
revealed a number of structural classes with 
consistent activity patterns (Figure 4). These 

classes of compounds not only contain analogs 
of known NR ligands that further validated 
the utility of these assays, but also showed NR 
interactions not previously reported that war-
rant further toxicological evaluation because the 
SAR strengthens the validity of the observed 
activities. Several of these compound classes 
are known liver toxicants, the toxicity of which 
could be linked to their endocrine-disrupting 
potential, and as such, their NR activity pat-
terns could serve as predictive signatures for 
their toxicity end point (Judson et al. 2010).

Conclusions
Our analyses of the NR profiling data indicate 
that this is a valuable data set for generating 
hypotheses and establishing metrics for assay 
prioritization, and that we can strategically 
identify and reduce interpretive interference 
from assay artifacts. Moreover, LBD sequence 
and compound SAR analyses provide support 
to the utility of these qHTS assays in their 
ability to identify known endocrine-disrupt-
ing environmental chemicals and revealed 
classes of chemicals with activity patterns that 
could serve as bases for in-depth toxicological 
testing prioritization and provide clues for 
toxicity mechanism interpretation.

Figure 4. Example structure classes with consistent NR activity patterns or signatures. Compounds were clustered by structure similarity using the SOM algo-
rithm. Compounds in the same cluster belong to the same structure class. The structure classes shown contain compounds with similar activity patterns as well. 
DDT, dichlorodiphenyltrichloroethane.
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